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Induced Drag and the Ideal
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fThe editors of the Journal recognize that this article is
controversial. However, in the spirit of providing a forum for
authors to express new ideas or to give alternate interpretations
of old ideas, we are publishing it.

Nomenclature
a = rearward component of wake velocity

relative to fluid at infinity
OQ = rearward component of fluid velocity

relative to fluid at infinity at a plane
upstream of the wing

dE(front)/dt = rate of accumulation of energy in the
part of the wake forward of a plane
fixed relative to fluid at infinity

d//d/ = rate at which impulse accumulates in
the wake

DI = induced drag
= force on control volume due to momen-

tum change
= induced drag due to momentum change
= pressure force on control volume
= induced drag due to pressure

£(forward) = net flow of energy from the rear of the
wake to the front past a plane fixed
relative to fluid at infinity

Flux£(hydrauiic, forward) = forward flow of energy in the wake as
mechanical work past a plane fixed
relative to fluid at infinity

Fluxjr£(aft) = aft flow of kinetic energy in the wake
past a plane fixed relative to fluid at
infinity

p = pressure in the wake relative to that at
infinity

p0 = pressure relative to that at infinity at a
plane upstream of the wing

r = a position vector from any fixed center
s = distance along the perimeter of a trans-

verse cross section of the wing or other
body

v = lateral component of wake velocity
VQ = lateral component of velocity at a plane

upstream of the wing
V = speed of the wing relative to fluid at

infinity
w = downward component of wake velocity
w0 = downward component of fluid velocity

at a plane upstream of the wing
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x - distance aft of an arbitrary plane that
moves with the wing

ft - angle at which the wake is inclined
downward

4> = slope of the outer surface of a body
relative to the x axis, the sign chosen so
the outward normal slopes upstream

p = density of the fluid
KJ = vorticity

Introduction

A FAMILIAR approximation to the vortex wake of a wing
is a plane vortex sheet connecting the bound vorticity at

the wing with the starting vortex. The sheet slopes downward
toward the rear. The growth of wake impulse with time,
directed downward and slightly forward, accounts quite well
for the lift of the wing, but, as found by Sears, the forward
component is twice the induced drag.1 Applying Bernoulli's
theorem to the assumed wake, Sears finds that the integral of
the pressure over the cross section of the wake is positive and
equal to one-half the momentum drag due to the forward
component of wake impulse, so the net. induced drag agrees
with the value derived in other ways. Sears was surprised to
find that the integral of pressure was positive. He said, "Thus
one's usual concept—at least the author's—wherein the drag
is balanced by reduced pressures downstream, seems to be
incorrect."

As the wake force exists in the Trefftz plane, which is
anywhere and everywhere more than a few spans behind the
wing, Sears would have a compressive stress throughout the
length of the wake, making it a long column under compres-
sion. Why does it not buckle?

And what contains its positive pressure? The pressure in a
vortex is lower than the pressure outside. For it to be higher,
the circumferential velocity in the vortex would have to be
imaginary so as to reverse the direction of the centrifugal field.

The sloping vortex sheet is very different from the inviscid
idealization of the real wake. In the sheet model, all motion is
at right angles to the long axis of the sheet. Using such
arbitrarily specified velocities in Bernoulli's theorem will not
yield true pressures. The idealized wake results from the
rolling up of the sheet and consists of two regions of roughly
helical vorticity. Within each tip vortex, fluid flows aft.2

Figure 1 shows the vortex wake of a lifting wing. In the sketch,
the vortex sheet is not cut off at the rear in a plane, but at the
locus of fluid particles that had once all been in the same
transverse plane upstream of the wing. In vortex cores, this
locus is displaced to the rear by rearward axial flow. One
vortex line is traced on the sheet on each side. The innermost
turns of the sheet in each vortex are not shown. Helical
vorticity makes each vortex analogous to a coaxially nested
array of solenoids wound at large pitch with many conductors
in parallel. (An infinitely long, hollow, current-carrying
solenoid has a circumferential magnetic field outside it and an
axial magnetic field within.) In the following, it is shown that
the aft flow drastically alters the picture given by Sears.

The treatment makes no assumptions about the flow
pattern. It depends only on the laws of physics. These laws
enforce the pattern shown in Fig. 1.

Idealized Theory
In the coordinate system of the wing, the flow is steady, so

the fluid obeys Bernoulli's theorem everywhere. Because there
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is no viscosity, there is no separation and no viscous wake.
Upstream of the wing, erect a plane perpendicular to the
velocity of fluid at infinity and thus also perpendicular to the
path of the wing. On this plane, the pressure relative to that in
fluid at infinity is called pQ and given by

(1)2 -1;02 - w0
2)

The longitudinal velocity of the fluid is V + a0, the speed V of
the wing plus the rearward velocity aQ (for "added'') of the
fluid relative to fluid at infinity; v0 is the lateral, w0 the vertical
velocity, and p the density of the fluid.

Likewise, on a plane downstream of the wing parallel to the
upstream plane, the pressure p is given by

p = (p/2)(V2 -V2- 2Va -a2-v2- w2)

-2Va-a2-v2- w2) (2)

Join the planes by a cylindrical surface, with the flight path
as axis, to complete a control volume around the wing.
Because the cylindrical surface is parallel to the flight path,
pressure upon it causes no force in the direction of motion.
The pressure force Ditp on the control volume is, therefore, the
difference between the integrals of pressure over the up- and
downstream planes, identified by the elemental areas cL40 and
cL4, respectively. Letting the radius of the control volume
increase without limit,

Ditp = (p/2) (-2Y00
J

~ VQ - w0
2) cL40

- (p/2) ( - 2Va - a2 - v2 - w2) dA
j

the integrals being over the infinite planes.
From continuity,

(3)

cL40 = Iff cL4 (4)

because the right side of the equation minus the left equals the
influx through the cylindrical surface, which, from the
following train of argument, is zero in the limit as the radius
goes to infinity. Along any radius drawn from the wing, the
velocity induced by the semi-infinite vortex pair falls as the
square of the distance, if this is large compared to the spacing
between the vortices and the radius chosen does not point back
along the pair. This is true even though the vortices in the pair
are helical. The far field of a semi-infinite solenoid of
negligible pitch is, in effect, produced by a source at the end
of the solenoid. The velocity induced by the bound vortex also
falls as the square of distance if the distance is large. Because,
along any radius, the transverse velocity goes as (distance)"2,
whereas the area of the cylindrical surface rises as (distance)1,
the influx through the cylindrical surface falls with increasing
radius at least as fast as (distance)"!, and Eq. (4) holds in the
limit as the radius approaches <x.

Combining Eqs. (3) and (4) gives

Ditp = (p/2) ( - al- vl - w0
2) cL40

j

+ (p/2) (a2 + v2 + w2) dA (5)

Because al, VQ, and WQ fall off as (distance)"4, the first
integral in Eq. (5) may be made arbitrarily small by moving
the A0 plane far enough upstream. The second integral
depends on the location of the downstream plane of integra-
tion, but far enough downstream so the vortex sheet has rolled

up into a vortex pair, i.e., in the Trefftz region, there is little
change with distance, hence,

(6)= (P/2) (a2 + v2 + w2) dA

is the part of the induced drag that is due to pressure. The two
infinites in the subscript mean that Eq. (6) is the limiting case
as the up- and downstream planes are moved farther and
farther from the wing. [Multiplying the integrand in Eq. (6)
by (V + a) dA, gives the rate at which the negative wake
pressure, acting over the elemental area dA, does work on the
control volume and the identical rate at which kinetic energy
leaves the control volume through the same elemental area
dA.]

To calculate Di>m, the rate at which the fluid adds
downstream momentum to the control volume, note first that
the flux of momentum across the cylindrical surface is always
smaller than (F + ff)2 times the transverse slope of the
streamlines, which is the quotient of transverse by longitudinal
velocity. Since transverse velocity goes as (radius)"2 at large
radius, the flux of momentum through the cylindrical surface
goes as (radius) ~ ! and —> 0 as the radius —> oo. So in the limit
as the radius —oo, the momentum flow into the control
volume is the difference between the momentum fluxes across
the up- and downstream planes. The momentum that enters
but does not leave the control volume is the momentum
contribution to the force Dim on the control volume.
Therefore,

Di.m = P (F2 + 2Ffl0 + ffo2) cL40 - p (F2 + 2Va + a2) dA

= p -p\a2dA (7)

the last equality a consequence of applying Eq. (4). As before,
the integral of a2, vanishes in the limit if the upstream plane is
moved far from the wing and the downstream integral is
almost independent of distance, once the distance is large. So,

'A,moo,oo = - dA (8)

is the part of the induced drag due to longitudinal momentum,
in coordinates fixed relative to fluid at infinity, that is
removed from the fluid. Strictly, the measurable quantity that
appears in the fluid is the Kelvin impulse. The Kelvin impulse
of a flow pattern is the density of the fluid times half the first
moment of its vorticity or (p/2)jr x wd (volume), the integral
taken over all space, where r is the position vector of the
elemental volume relative to an arbitrary center and co the
vorticity at that elemental volume. Whereas the momentum of
a flow pattern in incompressible fluid of infinite extent is not

Fig. 1 The vortex wake of a lifting wing.
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uniquely defined, the impulse needed to create the flow
pattern is always given by this expression.3

Because the integral of a2 is always positive, the momentum
drag is always negative. This is true for a wing or any other
object that disturbs the air, even in the presence of viscosity.
In inviscid flow, the positive suction drag is \(a2 + v2 + w2)dA
and is larger than the negative of momentum drag in
proportion as {(a2 + v2 + w2) dA is larger than 2\a2dA.

The total induced drag could be found by adding Di>poo,oo
from Eq. (6) to Di>moo^ from Eq. (8). However, Lofquist4

pointed out to me that the total drag must not depend on the
location of bounding planes of the control volume, so long as
they are clear of the wing. Adding Eqs. (5) and (7) gives the
total induced drag for general positions of both planes,

(9)

of wake. So,

= (p/2) (tf0
2 - v$ - w0

2) cL40

+ (p/2) ( - a2 + v2 + w2) dA

The independence of Z>/ on the location of the planes requires
that both integrals be independent of the position of the planes
of integration so long as they miss the wing. Since all terms of
the first integrand approach zero as the upstream plane is
moved away from the wing, this integral is zero for any
position of the plane; consequently,

DI = (p/2) ( - a2 + v2 + w2) dA = - \(p + pa2) dA (10)
J j

[which is the sum of Eqs. (6) and (8)] for any positions of both
planes that do not intersect the wing. [Eq. (10) is what Landau
and Lifshitz5 would have found their Eq. (47.3) to be, had
they not neglected the - a2 term. Subject to this approxima-
tion, their result is correct, although Sears is right that their
derivation is faulty.] This independence of the position of the
planes of integration is true of the total induced drag, not of
its pressure and momentum constituents separately.4

Equation (9) is true even if the planes intersect the wing, the
part of any plane lying within the wing, or other body being
excluded from the integral. It gives the induced drag on the
whatever bodies or parts of bodies lie between the planes. In
the limit that the planes become very close together, dD//ch:,
the induced drag per unit length x of body or bodies, is given
by the x derivative of (p/2){( - a2 + v2 + w2) dA, hence

P tan0 ds

-
/dw

Wl -T-\dx

dp _ da-f-+2pa —dx dx
, .dA (11)

where s is distance along the perimeter of a transverse cross
section of a body, and </> is the slope of the surface of the body
relative to the x axis, 0 being positive when the outward
normal slopes forward. The body or bodies may extend
indefinitely in the plus or the minus x direction; thus, Eqs. (9)
and (11) apply to a wind-tunnel model and its sting.

The presence of — a2 in Eq. (10) looks wrong. Induced drag
results from adding energy to the fluid, yet here is a term in
velocity squared that reduces the drag. The explanation lies in
a forward flow of energy in the wake. To see this, first
calculate the rate at which energy, in the coordinate system
fixed relative to fluid at infinity, accumulates in the part of the
wake forward of a vertical plane in the Trefftz region behind
the wing. The plane is fixed relative to fluid at infinity and
oriented at right angles to the wing's motion. The rate of
energy accumulation in advance of the plane is the speed V of
the wing away from the plane times the energy per unit length

d£(front)/d/ = (P/2) (a2 + v2 + w2)V dA

Subtract from this the drag power

Dy = (p/2) \(-a2

and the difference is

w2)VdA

Flux,̂ (forward) := pV\a2dA

(12)

(13)

(14)

the net rate of flow of energy from the rear of the wake to the
front. It is always positive. Comparing Eq. (14) with Eq. (8)
shows that Flux^(forward) equals the negative of the momentum
drag power. The negative momentum drag, which is momen-
tum thrust, is paid for by energy recovered from the wake.

Flux£(forward) is the net flux, the difference between a
forward flux,

(15)

F1UX£-(hydraulic, forward) = ~ \pa

= (p/2) (2Va + a2 + v2 + w2)a dA

the rate at which energy flows forward as mechanical work
done by the (mostly negative) pressure in the wake times the
velocity of the fluid, and

Flux™aft) = (p/2) (16)

the rate at which kinetic energy in the wake is carried aft
across the plane by the wake fluid's aft velocity a. The
forward flux is larger than the rearward flux.

At first sight, this appears paradoxical. How can the rear
part of the wake provide energy? The answer is that it contains
energy, some of which can be recovered. In free fluid, vortex
lines can exist only as loops. The rear ends of the trailing
vortices are connected to each other by the starting vortex. At
the starting vortex, fluid flowing aft in the core of one trailing
vortex meets fluid flowing aft in the others and the aft region
of the vortex loop swells to accommodate it. The fluid in the
swelling vortex is decelerated as it climbs the pressure
gradient, loses kinetic energy, and approaches zero velocity as
the vortex grows toward infinite diameter.

What, in this idealized, inviscid world, does the drag force
react against? At the Trefftz plane, induced drag results from
negative pressure in the wake. The wake is in a state of
tension. The rear end of the wake must be anchored. The only
way to anchor something in fluid, imperfectly at that, is to
have it create impulse. The rear end of the wake is a hairpin
loop, which is convected downward and then forward. (This
particular flight started with a catapult launch at cruising
altitude.) The impulse of this for ward-facing downward loop
accounts for induced drag—and a bit more to balance the
rearward impulse of the negative momentum drag. The
impulse in the loop grows linearly with time if the wing is in
steady flight.

The velocity field of this loop extends throughout all space.
In the region around the wing, it causes the integrals of aQ and
a over the upstream and Trefftz planes to be nonzero, but its
contributions to velocity and pressure at the two planes are
almost identical. The pressure is minute, but distributed over
an enormous area to give a nonzero force. The entire
atmosphere is accelerated, so the pressure is positive every-
where forward of the starting vortex and negative behind it.

If a 747 airliner leaving New York were pulled from London
by a weightless rope and there were no skin friction (and the
Earth were flat), the tension in the rope would almost equal
the tension in the wake, the difference being accounted for by
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the negative momentum drag. The tension in the wake would
add London-aimed impulse to its New York end. Because this
flight started with a takeoff, the New York end of the wake
would not be high in the sky and convecting downward, but
near the ground and split apart, each vortex convecting
outward in the velocity field of its image beneath the flat
landscape of Long Island. Instead of one hairpin loop, there
would be two, each formed where a vortex joins its image,
each curling forward and each losing energy as it fattens on
the arriving axial flow.

Why does the tipped-sheet vortex wake correctly predict the
lift, yet misrepresent the cause of drag? The tipped sheet is a
superposition of rectangular vortex loops of various widths.
In the real wake, the long sides of these loops are replaced by
helices. Figure 2 shows top and rear views of a single vortex
line in the horseshoe formed by the bound vortex and the two
trailing vortices. The arrows show the hand of the vorticity.
Seen from above or below, a length of real wake has about the
same first moment and vertical component of impulse as the
rectangle and therefore about the same lift. Seen from the
front or rear, the moment of the helical trailing vortices
opposes the moment of the rectangle and is larger, when all
vortex filaments are considered. The momentum drag is
therefore negative, whereas for the rectangular vortex loop it
would be positive.

Practical Consequences
How big is the negative momentum drag Diymo0y<x - — p\a2dA

relative to the pressure drag A>oo)0o = (p/2)((02 + v2 + w2)dA?
For a rough estimate, remember that the tip vortices are open
at the front and suck in freestream fluid. The pressure drop
due to longitudinal motion must be of the same order as that
due to transverse motions. Thus, V2 — (V + a)2 = — 2Va — a2

must, in some average sense, be near — v2 — w2, which means
that when v and w approach V in magnitude, a approaches v
and w (Ref. 2 reaches a similar conclusion) and the negative
momentum drag ceases to be negligible relative to the suction
drag. This condition is met at high span loading. In fact, in the
vortex above the leading edge of a delta wing at high angles of
attack, v and w can exceed V in magnitude and a can exceed
all three. Rearward flows several times the speed of the
aircraft have been measured in these vortices in model
experiments.6'7

The rearward flow in the trailing vortices affects lift as well
as drag. Because it increases the speed with which shed
vorticity is carried aft, it raises the rate dl/dt at which impulse
is shed into the wake. This rate is given by

dl/dt =p\r a)dA (17)

and is the vector negative of the total momentum force on the
wing. Here, r is a vector from any fixed center and to the
vorticity. In addition, the axial flow contributes some of the
downward impulse given by Eq. (17) by virtue of its own
momentum, because of the downward inclination of the wake.
The wake inclination /3, however, also reduces lift in a way not
accounted for in Eq. (17), because it directs wake suction
downward. The reduction is Ditpo0t00 tan/3.

In real life, skin friction accelerates the boundary layer
forward and creates a sheet of forward-moving fluid in wake
that gets wound into the tip vortices. At low span loading, the
forward impulse of this fluid can be larger than the rearward
impulse due to roll-up of the vortices. The latter slightly more
than cancels the forward component of the impulse that
results from the slope of the trailing vortices, which, as Sears
notes,1 is about twice the induced drag. Therefore, the
forward impulse due to skin drag will exceed the rearward
impulse due to roll-up whenever the skin drag of the wing is
more than twice the induced drag. Since skin drag goes about
as (speed)2 and induced drag as (speed) ~2 , the speed at which
the skin drag is twice the induced drag is 2V4 times the speed

a) Top I _ _ < _ _ _ . / b)Rear

Fig. 2 Top and rear views of a single-vortex filament in the wake.

that makes them equal, which is also the speed at which their
sum is least. So, at any speed more than 214 times the speed of
minimum wing drag the forward impulse in the air due to skin
drag will be greater than the rearward impulse due to wake
roll-up.

The forward motion due to skin drag associated with a
particular bit of vortex sheet in a tip vortex occurs at the sheet.
The aft motion that the bit of sheet induces occurs at all points
nearer the axis of the vortex. So, in the absence of some other
phenomenon, there should be rearward motion near the axis
even at low span loading when the overall wake motion is
forward (the propulsive wake is here ignored). As the lift
coefficient rises, the rearward flow should become more
prominent, as, indeed, it did in the only experiment I know of
that found rearward flow in the tip vortex of a conventional
wing.8

Obviously, in a real fluid with viscosity and turbulence,
rearward flow is not pumped by a lossless recovery of energy
from the starting vortex end of the wake. Instead, it must be
pumped by swirl energy much closer to the wing through some
process involving dissipation. To the rear of where this process
occurs, axial flow in the vortex cores will be forward. At high
angles of attack, vortex breakdown can occur well within the
pressure field of a delta wing, even ahead of the trailing edge,
and can modify the forces on the wing.9

Summary
The wake of a lifting wing in inviscid flow is a pair of

downward-sloping vortices with distributed vorticity in which
the vortex lines are approximately helical. Within the vortices,
fluid flows aft relative to fluid at infinity, and its Kelvin
impulse more than nullifies the forward Kelvin impulse caused
by the slope of the vortex pair. The momentum drag is
therefore negative. Suction in the vortex cores more than
counterbalances the negative momentum drag, and the
difference between the two is the induced drag. The negative
momentum drag is much smaller in magnitude than the drag
due to suction except at high span loading. The induced drag
is the integral over any transverse plane behind the wing of the
difference between the energies of lateral and longitudinal
motion per unit length. The drag contributed by the portion of
the wing, or of any distribution of bodies, between any two
transverse planes is equal to the growth of the above integral
between the forward and after of these planes.
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Structural Optimization for
Aeroelastic Control Effectiveness

M. Karpel* and Z. Sheenat
Israel Aircraft Industries,

Lod, Israel

Introduction

THE issue of aeroelastic effectiveness of wing trailing-edge
control surfaces may present a major design goal for the

aircraft designer. A fully stressed and buckling-designed wing
is sometimes deficient in meeting the required aircraft perfor-
mance because of insufficient control effectiveness at high
speed. The problem is how to resize the wing structure such that
the control effectiveness requirements will be satisfied with
minimum increase in weight.

The FASTOP computer program1'2 applied a simple and
efficient method for optimization of metallic structure with
strength and flutter constraints. The method was later extended
to deal with composite structures subjected to strength and
deflection constraints and integrated into the ASOP-3 com-
puter program.3 Further development of the basic optimization
procedure of FASTOP to address constraints on aeroelastic
effectiveness and static divergence is given by Lerner and
Markowitz4 and was used in the design of the X-29 forward-
swept-wing demonstrator aircraft5 and on the Lavi wing and
vertical tail.6 The most time-consuming portion of the Ref. 4
procedure is the calculations of the aeroelastic effectiveness
parameters after each optimization step. This calculation is
performed using a discrete-coordinate approach with the struc-
tural model clamped to the ground to allow inversion of the
stiffness matrix. As a result, inertia relief effects are not taken
into account during the optimization process.

Sheena and Karpel7 used the modal approach for performing
static aeroelastic analysis. The present work follows the for-
mulation of Ref. 7 and extends it to include effectiveness
derivative calculations along the optimization path. This appli-
cation, which uses free-free aircraft vibration modes, allows
larger optimization steps between two finite-element model
updates and makes the calculations so efficient, that a major
optimization cycle may be completed in a short online com-
puter session. Another advantage of the present method is that
inertia relief effects are implicitly taken into account in calcu-
lating the effectiveness parameters and their derivatives.
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Aeroelastic Effectiveness
The method of static aeroelastic analysis using aircraft vibra-

tion modes is described in Ref. 7. The basic assumption in the
modal approach is that the deflections of the structure can be
represented as a linear combination of a limited set of vibration
mode shapes. When a set of free-free vibration modes is used
as generalized coordinates, the aircraft matrix equation of
motion can be partitioned into rigid and elastic parts:

K °HH4° °HH4° °1 W[ O Mee\ UJ [O d UJ L O A«J Uej

Rrr Rr

Rer Re (1)

where [M], [C], and [K] are the diagonal generalized mass,
damping, and stiffness matrices, [R] is the generalized aerody-
namic force matrix, (£ j is the generalized coordinate displace-
ment vector, and [F] is a vector of the generalized external
forces which cannot be related to {£} through a constant co-
efficient matrix. Subscripts r and e related to rigid-body and
elastic modes, respectively, and q is the dynamic pressure. The
elements of [Rrr] are the rigid aerodynamic coefficients associ-
ated with rigid-body displacements. The generalized aerody-
namic matrix is calculated by

(2)

where [AFC] is the aerodynamic force coefficient matrix
obtained by a linear panel aerodynamic theory, [^] is the mode
shape matrix where displacements are defined at the panel
centroids, and W] are the chordwise derivatives of [^], where
slopes are defined at the panel control points. [%] and W] are
obtained from the modal displacements at the structural points
by a surface spline routine. When a quasisteady motion is
assumed,

and Eq. (1) yields

£r} + [Fr]

(3)

(4)
where

(Rrr] = [Rrr] + Q Wre} ({Kee} ~ Q [Reel)'1 WeA (5)

(6)= {Fr}+q[Rre]([Kee}-q[Ree]r{ [Fe\

The elements of [Rrr] of Eq. (5) are the "flexibilized" aero-
dynamic coefficients associated with the aircraft rigid-body
displacements. The rigid-body coordinates can be extended to
include rigid control surface rotations. In this way, Eq. (5) can
be used to flexibilize aerodynamic coefficients such as rolling
moment due to aileron deflection (CL) or hinge moment due
to aileron deflection (C//6). Equation (6) can be used to flexi-
bilize aerodynamic coefficients due to rigid-body velocities.
This is done by defining

(7);_ ^FC]|a/)
where {•«/ ) is the vector of induced-panel angles-of-attack due
to the rigid-body velocities.

The aeroelastic effectiveness of an aerodynamic coefficient
is defined as

(8)

where (Rrei]T and {Reri} are the /th row and they'th column of
[Rre] and [Rer], respectively.

Effectiveness Derivatives
It is assumed that the weight of a structural element wk is


